图书介绍

等离子体天体物理学 第2部分 重联与耀斑 影印版 英文=PLASMA ASTROPHYSICS【2025|PDF下载-Epub版本|mobi电子书|kindle百度云盘下载】

等离子体天体物理学 第2部分 重联与耀斑 影印版 英文=PLASMA ASTROPHYSICS
  • PART II:RECONNECTION AND FLARES 著
  • 出版社: 北京大学出版社
  • ISBN:
  • 出版时间:2012
  • 标注页数:413页
  • 文件大小:27MB
  • 文件页数:424页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

等离子体天体物理学 第2部分 重联与耀斑 影印版 英文=PLASMA ASTROPHYSICSPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Introduction1

1 Magnetic Reconnection5

1.1 What is magnetic reconnection?5

1.1.1 Neutral points of a magnetic field5

1.1.2 Reconnection in vacuum7

1.1.3 Reconnection in plasma8

1.1.4 Three stages in the reconnection process11

1.2 Acceleration in current layers,why and how?13

1.2.1 The origin of particle acceleration13

1.2.2 Acceleration in a neutral current layer15

1.3 Practice:Exercises and Answers19

2 Reconnection in a Strong Magnetic Field21

2.1 Small perturbations near a neutral line21

2.1.1 Historical comments21

2.1.2 Reconnection in a strong magnetic field22

2.1.3 A linearized problem in ideal MHD26

2.1.4 Converging waves and the cumulative effect28

2.2 Large perturbations near the neutral line30

2.2.1 Magnetic field line deformations31

2.2.2 Plasma density variations34

2.3 Dynamic dissipation of magnetic field34

2.3.1 Conditions of appearance34

2.3.2 The physical meaning of dynamic dissipation37

2.4 Nonstationary analytical models of RCL38

2.4.1 Self-similar 2D MHD solutions38

2.4.2 Magnetic collapse at the zeroth point41

2.4.3 From collisional to collisionless reconnection45

3 Evidence of Reconnection in Solar Flares47

3.1 The role of magnetic fields47

3.1.1 Basic questions47

3.1.2 Concept of magnetic reconnection48

3.1.3 Some results of observations50

3.2 Three-dimensional reconnection in flares51

3.2.1 Topological model of an active region51

3.2.2 Topological portrait of an active region55

3.2.3 Features of the flare topological model57

3.2.4 The S-like morphology and eruptive activity60

3.3 A current layer as the source of energy63

3.3.1 Pre-flare accumulation of energy63

3.3.2 Flare energy release64

3.3.3 The RCL as a Partof an electric circuit66

3.4 Reconnection in action68

3.4.1 Solar flares of the Syrovatsky type68

3.4.2 Sakao-type flares69

3.4.3 New topological models73

3.4.4 Reconnection between active regions75

4 The Bastille Day 2000 Flare77

4.1 Main observational properties77

4.1.1 General characteristics of the flare77

4.1.2 Overlay HXR images on magnetograms79

4.1.3 Questions of interpretaion82

4.1.4 Motion of the HXR kernels83

4.1.5 Magnetic field evolution84

4.1.6 The HXR kernels and field evolution85

4.2 Simplified topological model87

4.2.1 Photospheric field model.Topological portrait87

4.2.2 Coronal field model.Separators88

4.2.3 Chromospheric ribbons and kernels89

4.2.4 Reconnected magnetic flux.Electric field93

4.2.5 Discussion of topological model96

5 Electric Currents Related to Reconnection99

5.1 Magnetic reconnection in the corona99

5.1.1 Plane reconnection model as a starting point99

5.1.2 Three-component reconnection105

5.2 Photospheric shear and coronal reconnection107

5.2.1 Accumulation of magnetic energy107

5.2.2 Flare energy release and CMEs109

5.2.3 Flare and HXR footpoints110

5.3 Shear flows and photospheric reconnection114

5.4 Motions of the HXR footpoints in flares117

5.4.1 The footpoint motions in some flares117

5.4.2 Statistics of the footpoint motions118

5.4.3 The FP motions orthogonal to the SNL119

5.4.4 The FP motions along the SNL120

5.4.5 Discussion of statistical results123

5.5 Open issues and some conclusions125

6 Models of Reconnecting Current Layers129

6.1 Magnetically neutral current layers129

6.1.1 The simplest MHD model129

6.1.2 The current layer by Syrovatskii131

6.1.3 Simple scaling laws134

6.2 Magnetically non-neutral RCL136

6.2.1 Transversal magnetic fields136

6.2.2 The longitudinal magnetic field137

6.3 Basic physics of the SHTCL139

6.3.1 A general formulation of the problem139

6.3.2 Problem in the strong field approximation141

6.3.3 Basic local parameters of the SHTCL142

6.3.4 The general solution of the problem143

6.3.5 Plasma turbulence inside the SHTCL145

6.3.6 Formulae for the basic parameters of the SHTCL146

6.4 Open issues of reconnection in flares149

6.5 Practice:Exercises and Answers151

7 Reconnection and Collapsing Traps in Solar Flares153

7.1 SHTCL in solar flares153

7.1.1 Why are flares so different but similar?153

7.1.2 Super-hot plasma production157

7.1.3 On the particle acceleration in a SHTCL160

7.2 Coronal HXR sources in flares160

7.2.1 General properties and observational problems160

7.2.2 Upward motion of coronal HXR sources162

7.2.3 Data on average upward velocity163

7.3 The collapsing trap effect in solar flares168

7.3.1 Fast electrons in coronal HXR sources168

7.3.2 Fast plasma outflows and shocks168

7.3.3 Particle acceleration in collapsing trap171

7.3.4 The upward motion of coronal HXR sources174

7.3.5 Trap without a shock wave176

7.4 Acceleration mechanisms in traps177

7.4.1 Fast and slow reconnection177

7.4.2 The first-order Fermi-type acceleration179

7.4.3 The betatron acceleration in a collapsing trap180

7.4.4 The betatron acceleration in a shockless trap183

7.5 Final remarks184

7.6 Practice:Exercises and Answers185

8 Solar-type Flares in Laboratory and Space193

8.1 Solar flares in laboratory193

8.1.1 Turbulent heating in toroidal devices193

8.1.2 Current-driven turbulence in current layers195

8.1.3 Parameters of a current layer with CDT197

8.1.4 The SHTCL with anomalous heat conduction198

8.2 Magnetospheric Physics Problems200

8.2.1 Reconnection in the Earth Magnetosphere200

8.2.2 MHD simulations of space weather201

8.3 Flares in accretion disk coronae202

8.3.1 Introductory comments202

8.3.2 Models of the star magnetosphere203

8.3.3 Power of energy release in the disk coronae207

8.4 The giant flares208

9 Particle Acceleration in Current Layers211

9.1 Magnetically non-neutral RCLs211

9.1.1 An introduction in the problem211

9.1.2 Dimensionless parameters and equations212

9.1.3 An iterative solution of the problem214

9.1.4 The maximum energy of an accelerated particle217

9.1.5 The non-adiabatic thickness of current layer218

9.2 Regular versus chaotic acceleration219

9.2.1 Reasons for chaos220

9.2.2 The stabilizing effect of the longitudinal field222

9.2.3 Characteristic times of processes223

9.2.4 Dynamics of accelerated electrons in solar flares224

9.2.5 Particle simulations of collisionless reconnection225

9.3 Ion acceleration in current layers226

9.3.1 Ions are much heavier than electrons226

9.3.2 Electrically non-neutral current layers227

9.3.3 Maximum particle energy and acceleration rates229

9.4 How are solar particles accelerated?232

9.4.1 Place of acceleration232

9.4.2 Time of acceleration234

9.5 Cosmic ray problem236

10 Structural Instability of Reconnecting Current Layers237

10.1 Some properties of current layers237

10.1.1 Current layer splitting237

10.1.2 Evolutionarity of reconnecting current layers239

10.1.3 Magnetic field near the current layer240

10.1.4 Reconnecting current layer flows241

10.1.5 Additional simplifying assumptions242

10.2 Small perturbations outside the RCL244

10.2.1 Basic assumptions244

10.2.2 Propagation of perturbations normal to a RCL244

10.2.3 The inclined propagation of perturbations246

10.3 Perturbations inside the RCL250

10.3.1 Linearized dissipative MHD equations250

10.3.2 Boundary conditions251

10.3.3 Dimensionless equations and small parameters253

10.3.4 Solution of the linearized equations255

10.4 Solution on the boundary of the RCL258

10.5 The criterion of evolutionarity260

10.5.1 One-dimensional boundary conditions260

10.5.2 Solutions of the boundary equations261

10.5.3 Evolutionarity and splitting of current layers265

10.6 Practice:Exercises and Answers266

11 Tearing Instability of Reconnecting Current Layers269

11.1 The origin of the tearing instability269

11.1.1 Two necessary conditions269

11.1.2 Historical comments270

11.2 The simplest problem and its solution272

11.2.1 The model and equations for small disturbances272

11.2.2 The external non-dissipative region274

11.2.3 The internal dissipative region276

11.2.4 Matching of the solutions and the dispersion relation277

11.3 Physical interpretation of the instability279

11.3.1 Acting forces of the tearing instability279

11.3.2 Dispersion equation for tearing instability281

11.4 The stabilizing effect of transversal field282

11.5 Compressibility and a longitudinal field285

11.5.1 Neutral current layers285

11.5.2 Non-neutral current layers287

11.6 The kinetic approach288

11.6.1 The tearing instability of neutral layer288

11.6.2 Stabilization by the transversal field292

11.6.3 The tearing instability of the geomagnetic tail293

12 Magnetic Reconnection and Turbulence297

12.1 Reconnection and magnetic helicity297

12.1.1 General properties of complex MHD systems297

12.1.2 Two types of MHD turbulence299

12.1.3 Helical scaling in MHD turbulence301

12.1.4 Large-scale solar dynamo302

12.2 Coronal heating and flares304

12.2.1 Coronal heating in solar active regions304

12.2.2 Helicity and reconnection in solar flares305

12.3 Stochastic acceleration in solar flares307

12.3.1 Stochastic acceleration of electrons307

12.3.2 Acceleration of protons and heavy ions309

12.3.3 Acceleration of 3He and 4He in solar flares310

12.3.4 Electron-dominated solar flares311

12.4 Mechanisms of coronal heating313

12.4.1 Heating of the quiet solar corona313

12.4.2 Coronal heating in active regions315

12.5 Practice:Exercises and Answers317

13 Reconnection in Weakly-Ionized Plasma319

13.1 Early observations and classical models319

13.2 Model of reconnecting current layer321

13.2.1 Simplest balance equations321

13.2.2 Solution of the balance equations322

13.2.3 Characteristics of the reconnecting current layer323

13.3 Reconnection in solar prominences325

13.4 Element fractionation by reconnection328

13.5 The photospheric dynamo329

13.5.1 Current generation mechanisms329

13.5.2 Physics of thin magnetic flux tubes330

13.5.3 FIP fractionation theory332

13.6 Practice:Exercises and Answers334

14 Magnetic Reconnection of Electric Currents339

14.1 Introductory comments339

14.2 Flare energy storage and release340

14.2.1 From early models to future investigations340

14.2.2 Some alternative trends in the flare theory344

14.2.3 Current layers at separatrices345

14.3 Current layer formation mechanisms346

14.3.1 Magnetic footpoints and their displacements346

14.3.2 Classical 2D reconnection348

14.3.3 Creation of current layers by shearing flows350

14.3.4 Antisymmetrical shearing flows352

14.3.5 The third class of displacements354

14.4 The shear and reconnection of currents355

14.4.1 Physical processes related to shear and reconnection355

14.4.2 Topological interruption of electric currents357

14.4.3 The inductive change of energy357

14.5 Potential and non-potential fields359

14.5.1 Properties of potential fields359

14.5.2 Classification of non-potential fields360

14.6 To the future observations by Solar-B362

Epilogue365

Appendix 1.Acronyms367

Appendix 2.Notation369

Appendix 3.Useful Formulae371

Appendix 4.Constants375

Bibliography377

Index407

热门推荐